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Abstract

Nonlinear models and laboratory experiments suggest that populations can be chaotic,
whereas field data show that a fair proportion of observed populations are not too far
from being chaotic. Thus, a natural question arises: do ecosystems enjoy special
properties at the edge of chaos? By limiting the analysis to three classes of tritrophic food
chains and to the role played by the nutrient available to the bottom of the ecosystem,
we show that top-predator mean abundance is maximum at the edge of chaos. The
geographical variability of species abundance along nutrient gradients and the dynamic
complexity of observed natural populations are consistent with our findings. Effective

guidelines for the sustainability of exploited ecosystems are also derived.
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INTRODUCTION

A tritrophic food chain composed of prey (x), predator (y),
and top-predator (z) populations can be viewed, along
with any other ecosystem, as an assembly of interacting
plant and animal populations capable of transforming
nutrient available in the environment into biomass. Of
course, the amount of available nutrient affects the most
important features of the ecosystem, among which are
dynamic complexity and population abundance (Pimm e#
al. 1991; Abrams & Roth 1994a, b; Abrams et al. 1997; De
Feo & Rinaldi 1997; Gragnani et al. 1998).

Dynamic complexity can be perceived in different ways.
A food chain that settles to an equilibrium can be
considered simple, but it can also be considered complex if
transients toward equilibrium are wild. Here dynamic
complexity will not refer to the transients, but only to the
asymptotic mode of behaviour of the system, and more
precisely to the dimension of its attractor (Strogatz 1994).
Thus, there are at most three levels of complexity in
tritrophic food chains, because our analysis shows that
there are only three possible types of attractors in such
systems, namely (from simple to complex) equilibria
(stationary regimes), limit cycles (periodic regimes), and
strange attractors (chaotic regimes). In order to be
consistent with the above definition of dynamic complex-
ity, the abundance will also be associated with the
asymptotic regime and not with the transients. More
precisely, the top-predator abundance will be that at
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equilibrium or its mean value on a limit cycle or on a
strange attractor.

Our analysis consists of a detailed study of three
models, aimed at extracting common properties. A
comparable study in the laboratory can be conceived but
not performed, because the number of required experi-
ments is simply too high (our analysis is based on about
half a million simulations). Moreover, long experiments,
like those required to evaluate mean abundance for
different nutrient levels, are very difficult to keep under
control, and the difference between a cyclic and a chaotic
regime is often difficult (if not impossible) to ascertain
(Perry et al. 1997).

MODELS

The three food chain models used in this study are briefly
described in this section. The first and the second are
particularly suited for terrestrial and aquatic ecosystems,
whereas the third one is a metapopulation model
describing spatially heterogeneous systems. The equations
of the models and the parameter values used in the
analysis can be found in the cited references and are also
available from the authors.

Model 1

The first model, the Rosenzweig—MacArthur model, is
composed of a logistic prey and Holling type II predator
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and top-predator (Hastings & Powell 1991; McCann &
Yodzis 1994; Kuznetsov & Rinaldi 1996; De Feo &
Rinaldi 1997). When top-predator dynamics are slow with
respect to those of the two other populations, the model
can behave chaotically (Hastings & Powell 1991). More-
over, its cycles and strange attractors have the form of a
teacup or a cut teacup, as shown in Fig. 1 for increasing
values of prey carrying capacity. Teacup cycles are low-
frequency cycles involving slow, large swings of the top-
predator as well as bursts of fast prey-predator oscillations
(Muratori & Rinaldi 1992). By contrast, cut teacup cycles
are high-frequency cycles characterized by limited varia-
tions of top-predator abundance and permanent fast prey-
predator oscillations.

Model 2

The second model (Kooi e al. 1997; Gragnani ez al. 1998)
is the natural extension to three trophic levels of the well-
known ditrophic chemostat model proposed by Canale
(1969). In such a model the prey feeds on a limiting
nutrient (7) available in the environment. This is the case
of fresh water pelagic food chains, for example. The
nutrient (e.g. phosphorus) available at the bottom of the
chain is characterized by a mean residence time and is
controlled by the nutrient concentration of the inflow. The
nutrient equation is simply the balance between inflow,
uptake, and outflow, and the uptake per unit of prey (e.g.
algae) is assumed to be a Monod function of the nutrient
concentration, oz/(y + x). In the prey equation the natality
is consistently proportional to nutrient uptake, while the
predator (e.g. zooplankton) and top-predator (e.g. fish)
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Figure 1 The attractor of a Rosenzweig—MacArthur tritrophic
food chain for increasing values of prey carrying capacity: (a, d)
limit cycles, (b, ¢) strange attractors; (a, b) low-frequency teacup
attractors, (c, d) high-frequency cut teacup attractors.

equations are as in the Rosenzweig-MacArthur model.
Also, this model has low-and high-frequency cycles and
strange attractors for suitable values of the demographic
and environmental parameters (Gragnani et al. 1998).

Model 3

The third model is a fifth-order metapopulation model
describing systems characterized by some degree of
spatial inhomogeneity (Rinaldi ez @/ 1996). In this model,
x, 7, and z are prey patches (e.g. leaves) that are,
respectively, free, colonized only by predator (e.g.
parasites), and colonized by predator and top-predator
(e.g. insects), whereas the remaining two state variables ¥’
and Z describe predator and top-predator dispersed in the
environment. In the absence of predator dispersers
(Y=10), free patches grow logistically toward their
carrying capacity, whereas the rate of colonization of
free patches is proportional to the abundance of predators
dispersed in the environment (Y) and to the probability
that a disperser comes across a free patch. Such a
probability, obviously increasing from zero to one with
the density of free patches, is described by means of a
Monod function, x/(y + x). Similar considerations hold
for the rate at which patches occupied by predator are
invaded by top-predator dispersers Z. Finally, the
dynamics of Y and Z are simply the balance between
the inflow rate due to the release of predators and top-
predators into the environment from exhausted prey
patches, and the mortality rate due to starvation
(predation is possible only on patches).

RESULTS

The results of our analysis are presented in Fig. 2, where
the surfaces show how top-predator mean abundance z
depends upon two parameters, say pq and p,. For any pair
(1, p2) there is coexistence if z (p1, p2) > 0 and top-
predator extinction if z (p1, p2) = 0. The parameter p,
increasing in a NE direction, is a measure of the amount
of nutrient available to the ecosystem. This is obvious for
the second diagram (aquatic food chain) where p; is the
nutrient concentration of the inflow, but is also true for
the two other diagrams because prey-carrying capacity is
positively correlated with the nutrient available to the
bottom of the food chain (Oksanen er al 1981; Abrams
1993). The parameter p, (prey growth rate and mean
residence time) increases in a NW direction and has been
included in the analysis in order to prove the general
validity of our results. In the first and third cases, p, can
also be influenced by the nutrient supply, but this
possibility will not be considered because it is unin-
fluential (De Feo & Rinaldi 1997).
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Figure 2 Top-predator mean abundance Z versus two parameters:
21 (increasing in a NE direction) and p, (increasing in a NW
direction). The parameter p is an indicator of the abundance of
the nutrient available to the bottom of the food chain. Parts (a)—
(c) refer to Models 1, 2, and 3 described in the text. The white
curves separating different regimes are bifurcation curves. The
figure shows that top-predator mean abundance first increases
and then decreases with the abundance of nutrient (p1) and that
the maximum is approximately at the edge of chaos.
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Each diagram has been produced by simulating each
model on a fine grid (10,000 points) in the parameter
space (pq, po). For the pairs (p;, po) giving rise to
alternative attractors, the attractor with the highest z was
selected because it usually has the largest basin of
attraction. A method based on spectral analysis was used
to compute the value z associated with strange attractors.
The white curves in Fig. 2 separate regions with different
asymptotic regimes (i.e. with attractors of different kinds).
They cannot be detected through simulation because limit
cycles that are close to them are wild and can hardly be
distinguished from strange attractors. These curves are
the so-called bifurcation curves of a dynamical system
(Strogatz 1994) and, indeed, they have been produced
through bifurcation analysis, combining the theory of
normal forms with powerful numerical continuation
techniques (Kuznetsov 1995). The function z (p4, p») is
discontinuous on a bifurcation curve if the bifurcation is
catastrophic. In Fig. 2 some segments of the bifurcation
curves separating chaotic regimes from top-predator
extinction are catastrophic. This means that microscopic
nutrient variations can trigger macroscopic transitions
between different attractors.

The three surfaces shown in Fig. 2 share the following
properties, which can be easily discovered if one observes
how z varies with respect to p; (nutrient) for constant and
sufficiently high values of p,: (i) Dynamic complexity first
increases with nutrient (from stationary to chaotic regimes
passing through low-frequency cyclic regimes) and then
decreases (from chaotic to high-frequency cyclic regimes);
(if) top-predator mean abundance first increases and then
decreases with nutrient; (iii) top-predator mean abundance
is maximum with respect to the nutrient at the edge of
chaos, close to high-frequency cyclic regimes.

Of course, the surfaces in Fig. 2 vary with the
parameter settings. Nevertheless, a great number of
numerical experiments (not reported here) have shown
that properties (i)—(iii) remain valid provided the time
responses of the three populations increase from bottom
to top.

DISCUSSION

The above results satisfy the high level of synthesis that is
required in population dynamics today. Even taking into
account the scepticism that accompanies results derived
from modelling exercises, properties (i)—(iii) are of great
interest because they are valid in very common models used
every day to interpret data, perform forecasts, and derive
management policies for food chain systems. Nevertheless,
different results might hold for different models.

Our discoveries can be used to support or derive other
properties of ecosystems, e.g. the geographical variability
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of species abundance. For this, let us assume that the
amount of nutrient effectively available to the lowest
trophic level of many aquatic and terrestrial food chains is
determined by local geophysical and climatic character-
istics, which, in turn, depend on latitude, altitude, and
depth. Thus, even if all demographic parameters are
constant in space, in view of property (ii) we should
expect that species abundance wvaries in space. In
particular, we should expect that top-predator mean
abundance first increases and then decreases along
gradients of basal productivity.

An intriguing property recently formulated by Ellner
& Turchin (1995), namely the fact that observed field
populations are chaotic or almost chaotic, is also
consistent with our findings. In fact, let us assume that,
in order to save time and effort, surveys are often
performed at latitudes, altitudes, or depths where species
are most abundant. Then, under these conditions our
property (iii) would immediately imply that surveyed
populations are chaotic or almost chaotic. Notice that in
this way the result is derived without invoking evolu-
tionary theories or thermodynamics principles (Ferriere &
Gatto 1993; Kauffman 1993; Jorgensen 1995).

Finally, the properties (i)—(iii) have interesting conse-
quences in the case of food chains exploited at constant
effort, where managers can decide to enrich or impoverish
the system by increasing or dectreasing the supply of
nutrient. In such a case, food yield is proportional to top-
predator abundance and the model remains the same
(module an increase of top-predator mortality). Therefore,
plots like those in Fig. 2 can be regarded as plots of mean
food yield. Thus, if the aim of the management is the
maximization of mean food yield, statements (i)—(iii)
suggest to enrich if the regime is stationary, cyclic at
low-frequency, or chaotic, and to impoverish otherwise.
Such a rule is very attractive because it can be applied in the
absence of precise estimates of system parameters. Figure 2
shows, however, that the mean yield can collapse shortly
after its maximum. Hence the maximization of the mean
yield is risky, as pointed out by models of other exploited
ecosystems and by dramatic failures experienced in natural
resources management (Ludwig er 2/ 1993). Thus, a safer
operational rule might be to enrich stationary food chains
until some turbulence is detected in their dynamics. The
systematic application of this rule would force the system to
be suboptimal but increase the chances of its sustainability.
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