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Abstract.—Strong relationships between yield and dynamic behavior of tritrophic food chains are
pointed out by analyzing the classical Rosenzweig-MacArthur model. On the one hand, food
chains are subdivided into undersupplied and oversupplied categories, the first being those in
which a marginal increase of nutrient supply to the bottom produces a marginal increase of mean
yield at the top. On the other hand, a detailed bifurcation analysis proves that dynamic complex-
ity first increases with nutrient supply (from stationary to a low-frequency cyclic regime and,
finally, to chaos) and then decreases (from chaos to a high-frequency cyclic regime). A careful
comparison of the two analyses supports the conclusion that food chains cycling at high fre-
quency are oversupplied, while all others are undersupplied. A straightforward consequence of
this result is that maximization of food yield requires a chaotic regime. This regime turns out to
be very often on the edge of a potential catastrophic collapse of the top component of the food
chain. In other words, optimality implies very complex and dangerous dynamics, as intuitively
understood long ago for ditrophic food chains by Rosenzweig in his famous article on the para-
dox of enrichment.

Simple relationships are established in this article between the dynamics of
tritrophic food chains and the possibility of increasing yield through enrichment.
Our result can be viewed as contributing to the problem of enrichment raised in
the early seventies (Rosenzweig 1971).

The analysis is based on the Rosenzweig-MacArthur model, which assumes
that prey is logistic and that the predator and superpredator have a Holling Type
II functional response. We chose this model because of its adaptability to a great
variety of food chains (Yodzis and Innes 1992; McCann and Yodzis 1994) and
because of the richness of its behavior, covering the whole spectrum of dynamic
regimes, including chaos (Hastings and Powell 1991; Abrams and Roth 1994;
McCann and Yodzis 1994). The consequence of this choice is that each element
of our food chain universe is identified by a set of parameters describing the bio-
logical characteristics of the three populations (prey growth rate and carrying ca-
pacity, mortality, efficiency, maximum predation rate, and half-saturation con-
stant of predator and superpredator).

If the superpredator is exploited, its mortality is the sum of basic mortality
and harvesting effort, so that food yield is proportional to superpredator bio-
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mass. If the chain is not stationary, superpredator biomass varies in time, and its
mean value becomes the most simple indicator of food yield. In the case of cy-
clic regimes, the indicator is just the average value of superpredator biomass
over one cycle; in the case of chaotic regimes, it is the average value of that
biomass on a so-called strange attractor (Hastings et al. 1993).

Given a food chain, it is always possible, at least in principle, to enrich it or
impoverish it by increasing or decreasing the supply of limiting nutrients to the
bottom of the chain. This can be realized through many different interventions
that often influence only the prey carrying capacity (Oksanen et al. 1981; Ab-
rams 1993). It is therefore possible to distinguish between under- and oversup-
plied food chains. Undersupplied food chains are those for which a small in-
crease of prey carrying capacity gives rise to a small increase of mean
abundance of the top trophic level. Oversupplied food chains are those that can
be marginally improved through impoverishment. Hence, our food chain uni-
verse is subdivided into under- and oversupplied food chains. These two sets are
separated by a critical set (of zero measure) composed of all food chains with
food yield marginally insensitive to nutrient (energy) supply. If yield maximiza-
tion were the dominant mechanism of evolution, real exploited food chains
should be close to this critical set or tend to approach it through long sequences
of human interventions characterized by systematic increase (or decrease) of nu-
trient supply.

The dynamics of the Rosenzweig-MacArthur food chain have recently been
classified by means of bifurcation analysis (Klebanoff and Hastings 1994;
McCann and Yodzis 1995; Kuznetsov and Rinaldi 1996). The results are that co-
existence of the three populations is possible and, depending on parameter val-
ues, that the dynamic regime is stationary, cyclic, or chaotic. Moreover, food chains
with time responses increasing from bottom to top, such as phytoplankton-zoo-
plankton-fish, have cyclic regimes of two different types called low- or high-fre-
quency cycles (Muratori and Rinaldi 1992; Rinaldi and Muratori 1992; Kuznet-
sov and Rinaldi 1996). The distinction between these two types of cycles is
mainly based on their geometry, as shown in figure 1. The low-frequency limit
cycles (fig. 1A) are characterized by relevant and slow variations of the super-
predator (x3;) as well as by fast oscillations of prey (x;) and predators (x,). On
the contrary, high-frequency limit cycles (fig. 1B) are characterized by almost
- steady superpredator populations (x3;). Rosenzweig-MacArthur food chains can
therefore be grouped into four sets (stationary, cyclic at low frequency, cyclic at
high frequency, and chaotic), and the boundaries of such sets in parameter space
can be explicitly found through numerical bifurcation analysis.

In principle, one should not expect any particular relationship between the
two above classifications of food chains. In contrast with such an expectation,
we will show that a very strong relationship exists; namely, high-frequency cy-
clic food chains are oversupplied, and all other food chains are undersupplied.
The most intriguing implication of this discovery is that food chains with maxi-
mum mean food yield are on the edge of chaos. In other words, maximization
of food yield calls for the most complex dynamic behavior.

In management terms, our results support two very simple decision rules: if a
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FiG. 1.—Limit cycles of prey (x;), predator (x,), and superpredator (x;) in Rosenzweig-
MacArthur food chain: (A) low-frequency cycle and (B) high-frequency cycle.

food chain is stationary, cyclic at low frequency, or chaotic, then increase nutri-
ent supply; and if a food chain is cyclic at high frequency, then decrease nutrient
supply. It is important to note that these rules are operational, in the sense that
they allow one to make a decision even in the absence of information on system
parameters.

This article is organized as follows. First, we consider ditrophic food chains
and show that stationary food chains are undersupplied and cyclic food chains
are oversupplied (the second statement holds in the case of fast prey and slow
predator). Then, we turn our attention to tritrophic food chains and show the re-
sults of a detailed numerical bifurcation analysis carried out with respect to prey
growth rate and carrying capacity. The analysis is in agreement with previous
findings and conjectures (Abrams and Roth 1994; McCann and Yodzis 1994)
and clearly identifies the regions in parameter space where the dynamic regime
is stationary, cyclic {at low and high frequency), and chaotic. By computing the
mean food yield for all parameter values in the region of concern, we discover
that high-frequency cyclic food chains are oversupplied and all others are under-
supplied. Such a result, obtained numerically, is then proved to hold through a
simple geometric approach in the case of food chains with a superpredator char-
acterized by high time responses. Finally, the robustness of the results with re-
spect to various forms of enrichment and predator and superpredator behaviors
is also shown. Merits and weaknesses of our findings, as well as possible exten-
sions, are briefly discussed at the end of the article.

DITROPHIC FOOD CHAINS

The Rosenzweig-MacArthur ditrophic food chain is composed of a logistic
prey and a predator with a Holling Type II functional response. The model is
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where x; and x, are prey and predator biomass, r and K are prey growth rate
and carrying capacity, a is maximum predation rate, b is half-saturation constant
(namely, prey biomass at which predation is half of the maximum), e is predator
efficiency, and d is predator death rate that results from the sum of natural death
rate and harvesting rate (obviously ea > d since, otherwise, the predator cannot
persist).

As is well known (see, e.g., Hsu et al. 1978), the parameter space can be di-
vided into the following three regions:

K=

predator extinction,
ea —

bd - bd + bea

<K stationary coexistence,
ea — d ea —
and

>bd+bea
ea —d

K cyclic coexistence .

Note that this partition does not involve prey growth rate r. Moreover, in the
second region predator biomass at equilibrium is given by

_ ber bd
X, =———|ea—d— —
(ea — d)? K

and is therefore increasing with K (i.e., with nutrient supply). Thus, we can
state, in our jargon, that stationary ditrophic food chains are undersupplied.

The computation of mean predator biomass in the third region is not possible
analytically, because the prey-predator limit cycle is not known in closed form.
However, if we assume that predator dynamics are slow with respect to prey dy-
namics, for example, because predator efficiency and death rate are low, we can
use a very simple geometric approach (based on singular perturbation analysis)
to approximate the limit cycle. This approach, first suggested by May (1977) in
the context of population dynamics, uses the isoclines of the system. Figure 2
shows the isoclines of model (1) for two slightly different values of K, one just
below (fig. 2A) and the other just above (fig. 2B) the critical value K* = (bd +
bea)/(ea — d) separating stationary from cyclic food chains. In figure 2A the
predator isocline is on the right of the top T of the prey isocline, and the inter-
section is a stable equilibrium. A trajectory starting from a generic point, like
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Fic. 2.—Isoclines and trajectories of ditrophic food chain model (1) in the case of fast
prey and slow predator. Single- and double-headed arrows indicate slow and fast transitions,
respectively. In case A, K < K* (see the text), and the system tends toward equilibrium E;
in case B, K > K*, and the system tends toward the slow-fast limit cycle ATX; puX2min-

point O in figure 24, is composed first by a fast variation of the prey (horizontal
segment 01) and then by a slow motion of prey and predator tending toward the
equilibrium point along the isocline X, = 0. In figure 2B the predator isocline is
on the left of the top of the prey isocline so that their intersection is an unstable
equilibrium point. After the first fast transition from 0 to 1, the trajectory devel-
ops at slow speed along the prey isocline. When the top of such isocline is
reached, the prey collapses almost to O in a short time while the predator re-
mains practically constant at the value x,,,. Then in the absence of food, preda-
tors die off exponentially until the threshold biomass x,, is reached. Below this
threshold prey are capable of quickly reproducing and growing, and the conse-
quence is a horizontal high-speed trajectory ending at point A, where a slow mo-
tion is again activated toward point 1, thus closing a cycle. The threshold x; .,
can be determined by solving a simple integral equation (Rinaldi and Muratori
1992). Figure 2B implies that the mean value of predator biomass is somewhere
between Xy, and X, and is therefore much lower than x, ... On the contrary,
the predator biomass at equilibrium in figure 2A is approximately equal to X; -
This means that a switch of dynamic regime from stationary to cyclic, induced
by a microscopic increase of nutrient supply, is associated with a macroscopic
drop in food yield. Of course, if the time responses of prey and predator are not
extremely diversified, the fall of predator biomass is sharp but not discontinu-
ous. Thus, the mean predator biomass decreases with respect to K at least in
some interval K > K*. This proves that cyclic food chains with K slightly big-
ger than K* are oversupplied, as already noticed in many simulation studies.
We can conclude our discussion by noting that the above results suggest the
use of the following two operating rules in the vicinity of the point of maximum
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mean yield: if a ditrophic food chain is stationary, then increase nutrient supply;
if a ditrophic food chain is cyclic, then decrease nutrient supply.

The systematic use of these rules should slowly push exploited food chains to
provide more and more yield until K = K*. This corresponds to food chains that
are on the edge of the cyclic behavior. In such conditions, small positive errors
in the calibration of the nutrient supply (i.e., K = K* + €) can give rise to dra-
matic losses of food yield as sketched in figure 2 and apparently intuitively un-
derstood by Rosenzweig (1971, p. 385), who stated, ‘‘Man must be very careful
in attempting to enrich an ecosystem in order to increase its food yield. There is
a real chance that such activity may result in decimation of the food species that
are wanted in greater abundance.”’

TRITROPHIC FOOD CHAINS

The Rosenzweig-MacArthur tritrophic food chain is the following obvious ex-
tension of model (1):

. X1 ax;
X =xlnl-—=]-—1,
_( K) b1 +x1:|

. ax; aX3
Xy = Xo| € - —d|,

b1 + X1 b2 + X7 (2)
and
. ay X,
X3 = X3| e —d,|,
3 3| €2 b, + x, 2}

where r and K are prey growth rate and carrying capacity, and a;, b;, e;, and d,,
i = 1, 2, are the maximum predator rate, half-saturation constant, efficiency, and
death rate of the predator (i = 1) and superpredator (i = 2).

Many simulation studies (Hogeweg and Hesper 1978; Hastings and Powell
1991; Scheffer 1991; Rai and Sreenivasan 1993; McCann and Yodzis 1994;
- Wilder et al. 1994) have shown that model (2) can have chaotic dynamics and
that the strange attractors resemble very much the low- and high-frequency limit
cycles shown in figure 1. McCann and Yodzis (1994) have pointed out that not
all parameter values used in the above-mentioned articles are biologically mean-
ingful, but some of them are, such as those used by Scheffer (1991) for plankton
and by Wilder et al. (1994) for gypsy moths. This fact, together with the analy-
sis carried out by Abrams and Roth (1994) and McCann and Yodzis (1994) on
food chains composed of vertebrates and invertebrates, strongly supports the
conjecture that the irregular dynamics observed in many natural food chains
might, indeed, be that of a strange attractor.

A formal classification of all stable modes of behavior of model (2) has been
attempted by Klebanoff and Hastings (1994) and McCann and Yodzis (1995)
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FiG. 3.—The regions with different asymptotic regimes in parameter space (K, r). The
figure corresponds to the following parameter setting: a, = 5/3, b, = 1/3, ¢, = 1, d, = 4/10,

a, = 1/20, b, = 1/2, e, = 1, and d, = 1/100. Transitions from one regime to another are
smooth when crossing a dashed line and catastrophic when crossing a continuous line.

and then revised and completed (Kuznetsov and Rinaldi 1996) by means of spe-
cialized software for bifurcation analysis. In these studies, the discussion is
mainly focused on the effects of two parameters, namely, d, and d,. By contrast,
for our purpose, the analysis must be performed with respect to K and r, which
are the two parameters that are presumed to be correlated with nutrient supply
to the bottom of the food chain. Thus, the bifurcation analysis has been repeated
with respect to (K, r), and the result is that the bifurcations involved are essen-
tially the same as those already detected by activating (d,, d,). For this reason,
the complete bifurcation diagrams are not reported (for details on the methodol-
ogy and bifurcation structure, see Kuznetsov and Rinaldi 1996). We report here
in figure 3 only one diagram showing the regions with different modes of behav-
ior in the space (K, r). This diagram has been obtained fixing predator and su-
perpredator parameters a;, b, e, d, i = 1, 2, at the values specified in the cap-
tion and looking only at the bifurcation of the most significant attractor, namely,
that which has the highest mean yield. In other words, other attractors that coex-
ist with the main one in some small regions of parameter space (see Kuznetsov
and Rinaldi 1996) have been ignored. This simplification is justified by two
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facts: the basins of attraction of the disregarded attractors are quite narrow, and
their mean yields are much smaller than that of the main attractor. The bound-
aries of the various regions of the diagram reported in figure 3 are bifurcation
curves and would vary if the predator and superpredator parameters would be
varied. The continuous lines refer to so-called catastrophic bifurcations, and the
dashed ones refer to noncatastrophic bifurcations. When a continuous line is
crossed, the dynamic regime changes macroscopically. On the contrary, when a
dashed line is crossed, there is no discontinuity, and the dynamic regime
changes smoothly. Figure 3 gives a good idea of the influence of the prey pa-
rameters K and r on the dynamics of the food chain. In the lowest region, the
superpredator goes extinct so that food yield is rigorously zero. In the remaining
four regions, stable coexistence of the three populations is always possible but
through different dynamic behaviors. More precisely, going from the left to the
right (i.e., increasing prey carrying capacity), we have stationary coexistence,
cyclic coexistence at low frequency, chaotic coexistence, and, finally, cyclic co-
existence at high frequency. The chaotic region is a rather narrow and vertical
band delimited by a regular curve on the right side. By contrast, its left bound-
ary is a fractal set produced by a very complex bifurcation structure. Strange
attractors close to this border are teacup strange attractors similar to the limit
cycle shown in figure 1A. By contrast, strange attractors close to the opposite
border resemble the high-frequency limit cycle shown in figure 1B. In conclu-
sion, we can say that dynamic complexity first increases with prey carrying ca-
pacity (from stationary to chaotic regime) and then decreases (from chaos to cy-
cles). These findings are only in partial agreement with the conclusions of
Abrams and Roth (1994) based on simulations carried out at constant r. This is
due to the fact that they have not used a sharp method to distinguish chaotic
from cyclic regimes; in fact, in some cases they have classified a strange at-
tractor as a cycle and vice versa. Under these conditions, it is rather obvious that
they could not detect the results we have obtained through bifurcation analysis.

Let us now focus on mean food yield and its dependence on prey growth rate
and carrying capacity. As for ditrophic food chains, we simply consider super-
predator biomass as an indicator of food yield. For stationary food chains, the
value of x; at equilibrium can be easily expressed in terms of x; and x,. On the
other hand, from the superpredator equation it follows that x, is independent of
" K and r; thus, in conclusion,

X = P (K, ), X

Although the function W is rather complex, it is possible to show that 0¥W/dx,,
dx,/0K, and dx,/dr are positive for all parameter values (the proof, not reported
here, is available on request). This implies that x; increases with K and r or, in
our jargon, that stationary food chains are undersupplied. The computation of
the mean superpredator biomass x; for cyclic and chaotic food chains has been
carried out numerically on a fine grid (about 10,000 points) in the space (K, r).
A special program, based on spectral analysis, has been used in the case of cha-
otic food chains. Finally, the results of these computations have been interpo-
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F16. 4.—Mean superpredator biomass (proportional to food yield) versus prey carrying ca-
pacity and growth rate. See the legend to figure 3 for parameter values.

lated to produce figure 4. Obviously, food yield is zero in the region of super-
predator extinction (see fig. 3), while it is first increasing and then decreasing
with nutrient supply in the rest of the space. Moreover, the crest of the surface
in the K direction is almost independent of r, meaning that the optimum nutrient
supply is almost independent of prey growth rate. Finally, one can note that a
small increase of K above its optimum value can have dramatic consequences
on food yield if prey growth rate is low. All these features confirm some of Ro-
senzweig’s intuitions and partially agree with the analysis performed by Abrams
and Roth (1994), who, unfortunately, have simulated the system using too small
a number of points (about 100 vs. our 10,000) and have poorly evaluated the
mean yield (see, e.g., their figs. 1, 3, and 5, where they have indicated a range
of possible values instead of a precise value).

We can actually derive sharper conclusions by more carefully analyzing our
figures. For this, let us project the crest of the surface of figure 4 on the horizon-
tal plane, thus finding the sets of under- and oversupplied food chains in the
space (K, r), and then superimpose these sets to figure 3. The result, reported in
figure 5, is surprisingly simple: the set of undersupplied food chains almost co-
incides with the union of the sets of stationary, cyclic at low frequency, and cha-
otic food chains, and, consequently, oversupplied food chains almost coincide
with food chains cycling at high frequency.
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F1G. 5.—The set (shaded region) of undersupplied food chains. Note the near coincidence
of the right border of the chaotic region with the boundary of the shaded region separating
under- and oversupplied food chains.

As for ditrophic food chains, we can neatly support this result by analyzing
food chains with superpredator growing at an extremely low rate with respect to
prey and predator (Kuznetsov and Rinaldi 1996). In fact, in such a case one can
first freeze superpredator biomass at a constant value and determine the corre-
sponding asymptotic behavior of the (prey-predator) system. The result is a
three-dimensional figure showing how the equilibria and limit cycles of the fast
(prey-predator) system are influenced by superpredator biomass. Then, the slow
dynamics of the superpredator can be superimposed, as shown in figure 6 for
two slightly different values of K.

In figure 6A the food chain behaves on a low-frequency limit cycle. Prey (x,)
and predator (x,) oscillate at high frequency for a long period, while superpreda-
tor biomass (x;) slowly increases. The amplitudes of prey and predator oscilla-
tions decrease over time because higher superpredator biomass implies higher
harvesting pressure on predator population. When the superpredator biomass is
sufficiently high, prey and predator coexist at a slowly varying equilibrium until
the pressure on the predator population becomes so high that such a population
collapses, while prey population tends to carrying capacity (transition AB in fig.
6A). From this point on, the superpredator population has no food and dies of
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F1G. 6.—A sketch of behavior of tritrophic food chains with slow superpredator: (A) low-
frequency limit cycle and (B) high-frequency limit cycle. Dashed lines indicate unstable equi-
libria of the prey-predator system with a constant superpredator biomass.

starvation. During this period (transition BC in fig. 6A), the food chain is practi-
cally disconnected because there is no energy flow from prey to superpredator.
When the superpredator population becomes sufficiently low, the few remaining
predators can finally regenerate and reactivate the high-frequency prey-predator
oscillations, thus closing a teacup cycle. The mean value of superpredator bio-
mass on this complex cycle is obviously somewhere between the x; coordinates
of points B and C.

In figure 6B the carrying capacity K has been slightly increased. The conse-
quence (see Kuznetsov and Rinaldi 1996) is that the line of the unstable equilib-
ria of the fast (prey-predator) system touches the cycle manifold at two points,
D and E, which implies that there are no limit cycles in the prey-ptedator system
for a full range of values of superpredator biomass (x5 < x; < x5). The collapse
of the predator population occurs when x; = x3 and is therefore anticipated with
respect to figure 6A so that the whole cycle is characterized by much smaller
values of superpredator biomass. In conclusion, a small increase of prey car-
rying capacity has produced a switch from a low-frequency cycle (fig. 6A) to a
high-frequency cycle (fig. 6B), and this switch is accompanied by a remarkable
reduction of mean food yield. This is why in figure 5 the line separating under-
and oversupplied food chains almost coincides with the line on which teacup at-
tractors suddenly become shorter by losing the bottom of the cup.

Our findings support the two simple operating rules mentioned in the intro-
duction, namely, if a food chain is stationary, cyclic at low frequency, or cha-
otic, then increase nutrient supply; and if a food chain is cyclic at high fre-
quency, then decrease nutrient supply. These two rules could be used to guide
any pragmatic adjustment process aimed at improving food yield. Moreover,
food chains with maximum yield (i.e., food chains corresponding to the crest of
the surface in fig. 4) are on the edge of chaos. Thus, the systematic application
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of the above operating rules should slowly improve mean yield and gradually
transform food chains with simple behavior into chaotic food chains. And this
is true both for under- and oversupplied food chains.

ROBUSTNESS OF THE RESULTS

Up to now we have assumed that enrichment has an impact on only prey car-
rying capacity K because this is the assumption that is most often done in the
literature. In reality, enrichment can also influence the biological process respon-
sible for prey growth rate r.

To clarify this point, let us first write the growth of the prey (x,) in the ab-
sence of predator (x, = 0) as a simple balance between natality (n) and mortality
(m), that is,

X =xi(n—m,

where n and m are per capita natality and mortality rates of the prey. Then, as-
sume that

n=ny — Oxg,

and

m = my — Bx,,

where n, and m, are per capita natality and mortality rates at low prey densities
and owx, and PBx, are natality loss and surplus mortality due to intraspecific com-
petition. Under these standard assumptions, the above balance equation is equiv-
alent to the logistic equation (see model [2])

with
r=ny,— My,

and
_hy — my
o+ B

Of course, these formulas for r and K hold also when the per capita natality and
mortality rates ny and m,, as well as the intraspecific competition parameters o
and B, are sensitive to a control parameter S, from now on called nutrient sup-
ply. In such a case, we must simply rewrite the formulas as follows:

r(S) = no(S) — mo(S)
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and
no(S) — my(S)

K(S) = .
a(s) + B(S)

Affirming that the nutrient supply S has beneficial influence on prey natality and
mortality is equivalent to assuming that n, increases with S and m,, o, and B are
decreasing functions of S; that is,

no($) = 0,
my($) = 0,
o'(S) =0,
and 3)
B'(S) = 0.
As expected, from these inequalities it follows that
r(S) =0,
and
K'(S) = 0.

The above formulas for r(S) and K(S), together with inequalities (3), imply
something more, namely, that the ratio
r@S) _

XS a(S) + B(S)

is a decreasing function of S. In other words, when a food chain is enriched (i.e.,
when S is increased starting from a given value S), the point P = (K(S), r(S))
in parameter space moves upward and to the right starting from point P =
(K(S), r(S)) (because " = 0 and K’ = 0). But point P remains in any case,
below the straight line with slope r(S)/K(S) passing through the origin and
point P (because the ratio r(S)/K(S) decreases with §).

Up to now, we have studied the extreme case in which enrichment has an im-
pact only on prey capacity (i.e., () = 0). From the prior discussion, it follows
that this extreme case corresponds to n(S) = mo(S) = 0, namely, to the rather
common case of prey populations with individuals competing for a resource S
but scarcely influenced by it at low numbers. Another extreme case, o'(S) =
B’(S) = 0, corresponds to populations in which individuals do not compete for
S, which is therefore biologically less significant. This happens, for example,
when S is a measure of the quality of the habitat, namely, a resource for which
individuals do not compete but that could influence their natality and mortality
at low densities.

The above simple interpretations of the relationships between nutrient supply
S and prey parameters (K, r) suggest that for most food chains the first extreme
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assumption (K varies with S, and r is constant) should better interpret the real
impact of enrichment. But let us determine, in any case, what would be the con-
sequence of the second extreme assumption, when a small increase of nutrient
supply can be viewed as a small step in the parameter space (K, r) along the
straight line passing through the origin. Under- and oversupplied food chains
can be easily determined under this new assumption on enrichment. One has
simply to look again at figure 4 and determine the crest of the surface along all
rays through the origin. The result is obvious: the new crest practically coincides
with the old one, because the yield is much more sensitive to K than to r. This
means that all our findings are valid provided that enrichment has an impact on
prey parameters in any form ranging between the two extreme forms we have
considered (i.e., in any form satisfying conditions [3]).

A second check of the robustness of our conclusions has been conducted by
repeating for different parameter settings the analysis presented in the previous
section. In accordance with the geometric interpretation based on slow-fast dy-
namics (see fig. 6), all the cases corresponding to a superpredator with low effi-
ciency, predation rate, and death rate have fully confirmed our analysis. We
have therefore varied the parameters to test cases with superpredator time re-
sponses comparable to prey and predator time responses. Under these condi-
tions, one should expect that the distinction between low and high frequency is
not possible anymore. Intuition has been confirmed by the analysis, as shown by
figure 7, which has been obtained with superpredator efficiency and death rate
10 times bigger than in figure 5. The regions of low- and high-frequency cyclic
behavior are now melted in a single region surrounding the region of chaotic
behavior. The line separating under- from oversupplied food chains still approxi-
mates fairly well the right boundary of the chaotic region. Thus, it is still possi-
ble to conclude that to improve the yield when prey growth rate is high, one
should force the ecosystem to behave chaotically. By contrast, food chains with
low prey growth rate cannot be chaotic, and the maximization of their yield is
obtained with a cyclic regime. This means that the two operating rules formu-
lated in the previous section should only be slightly adapted to fit with this spe-
cial case.

The last and possibly most interesting checks we have performed concern
some functional perturbations of the model. The first one takes care of a special
kind of heterogeneity, namely, the existence of a refugium where the prey popu-
lation cannot be predated and is therefore at carrying capacity. For this we have
added in the prey equation a small diffusive inflow proportional to the difference
between carrying capacity and prey density. This simple modification of the
Rosenzweig-MacArthur model has been recently proposed by Scheffer and De
Boer (1995) in the context of plankton dynamics. The second modification we
have considered is related to the functional response of the superpredator. To
take into account that large superpredators often have alternative sources of food
and switch to a specific one only if it is not too scarce, we have substituted the
Holling Type II functional response a,x,/(b, + x,) with a Holling Type III (sig-
moid) functional response a,x3(b3 + x3). Finally, we have also considered the
case in which the functional responses have Ivles’s exponential form instead of
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F1G. 7.—The set (shaded region) of undersupplied food chains in the case of a predator
and superpredator with comparable time responses. The regions of low- and high-frequency
cycles are melted in a single region.

the classical Monod form. In all these cases we have found results completely
similar to those described in figures 3 and 5. The reason for this is that the
above modifications do not substantially alter the geometry of the attractors of
the fast components of the system. In other words, these attractors vary with su-
perpredator biomass roughly as in figure 6, so that the mechanism responsible
for the sudden yield collapse is still present.

Another possible modification is to add to model (2) one differential equation
describing nutrient dynamics. This obviously requires modifying the prey equa-
tion by substituting the logistic growth rate with the balance between a nutrient
uptake rate and a mortality rate. The new food chain model would then be a
fourth-order chemostat model in which enrichment is realized by increasing ei-
ther the flow rate or the concentration of the nutrient inflow. The classification
of all the dynamic modes of behavior of this model requires a relevant computa-
tional effort and has not yet been published. But the analyis of the dynamics of
the fast components of the chain (nutrient, prey, and predator) for different con-
stant values of superpredator biomass is easily accomplished and allows one to
verify that a catastrophe mechanism like that described in figure 6 is present
also in this case. This implies that the conclusions obtained for the Rosenzweig-
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MacArthur model hold also for the chemostat food chain model. This is not sur-
prising since some sort of equivalence between the two models has already been
pointed out (Gragnani and Rinaldi 1995). The details of the analysis concerning
bifurcations, chaotic behavior, and maximization of mean yield of the chemostat
model will be published elsewhere.

CONCLUSION

We have shown that a strong relationship exists between dynamic behavior
and abundance of the top component of tritrophic food chains. In a sense, this
article can be considered as the natural follow-up of a study by Abrams and
Roth (1994), who concluded that often mean abundance of the top species first
increases and then decreases with nutrient supply to the bottom species and that
chaotic regimes are obtained for intermediate values of nutrient supply. Our
study confirms these two facts and shows that they are actually tied together be-
cause mean abundance of the top species is maximum at the edge of chaos. This
very sharp and intriguing property was not discovered by Abrams and Roth
(1994, p. 1129), who only noticed that ‘‘chaos occurs for a range of carrying
capacities close to those producing the maximum population size of the top spe-
cies.”’

More precisely, we have discovered that food chains that tend to behave at
equilibrium, on a low-frequency limit cycle, or on a chaotic attractor are under-
supplied, in the sense that the mean abundance of their top component (or their
food yield in the case of the top predator being harvested) can be marginally
increased by slightly enriching the bottom of the chain. Conversely, food chains
with high-frequency cyclic behavior should be impoverished to improve top
abundance. These conclusions have been obtained by comparing the results of a
detailed bifurcation analysis identifying all dynamic modes of behavior, with the
results of a systematic simulation analysis aimed at determining the dependence
of top abundance on prey growth rate and carrying capacity. The same results
have also been formally proved for the special but important case of food chains
characterized by a top predator growth rate much lower than that of the prey and
predator. One important consequence of our findings is that maximization of top
abundance requires a special chaotic regime, which is very often on the edge of
a potential catastrophic collapse. In other words, optimization requires very
complex and very dangerous dynamics, as intuitively perceived long ago by
Rosenzweig (1971) in his famous article on ditrophic food chains.

These findings might be of great importance for understanding community
evolution due to exploitation or gradients of primary productivity. For example,
they might be used for explaining the catastrophic collapse of too heavily en-
riched resources or the differences in abundance of various species at different
latitudes, altitudes, and depths.

We like to stress that the enthusiasm for the general principle ‘optimality im-
plies chaos’’ has already appeared in other areas of biology (e.g., brain activity,
Rapp et al. 1985; cardiac function, West and Goldberger 1987; metapopulations,
Allen et al. 1993; evolution, Ferriere and Gatto 1993; Kauffman 1993; ecosys-
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tems, Jorgensen 1995) and should be counterbalanced by the consciousness of
the limits of the approach we have followed to derive it. In fact, our findings are
not supported by field or laboratory experiments, which would in any case re-
quire a paramount effort. Moreover, our derivation relies on a specific model, in
which the complexity of plant and animal behaviors and trophic interactions are
kept at a minimum. Thus, it is perhaps more honest, and certainly more appro-
priate, to say that the standard assumption of logistic growth of the prey and
Holling Type II functional response of predator and superpredator point out the
principle ‘‘optimality implies chaos.”” The problem then becomes the following:
Are some of the neglected properties of the three populations involved so strate-
gic as to destroy the validity of the principle? In this respect, we have already
shown that this principle survives a number of functional and structural modifi-
cations of the model. But a great number of ecologically significant extensions
still remain unexplored.

Finally, at a more abstract level, it would also be interesting to explore
whether any relationship exists between the principle °‘optimality implies
chaos’’ and other general principles of evolution, adaptation, self-organization,
thermodynamics, and information in biological systems that have recently been
used to support the idea that ecosystems are on (or should tend toward) the edge
of chaos.
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