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Abstract

In this paper we show how sustainability can be rigorously defined by making reference to the

positivity of the attractors of a dynamical system. Consistently, the sustainability analysis with

respect to various system and policy parameters can be performed by using specialized software

for the study of the bifurcations of nonlinear dynamical systems. By means of an example

concerning the tourism industry, we show how the analysis can be systematically organized and

how easy it is to interpret the results of the numerical bifurcation analysis.
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1 Introduction

The notion of sustainability is, nowadays, one of the most pervasive (if not invasive) in all po-

litical debates. The idea of sustainability emerged in the late sixties and can be traced in some

pioneering scientific work, like that of Hardin (1968) or those that inspired the Club of Rome

(Forrester, 1971), and of various socio-political movements (http://greenpeace.org ,

http://wwf.org andhttp://zerogrowth.org are few among the hundreds).

A great number of studies followed the pioneering stage and gave rise toconferences, as the

1992 UN Commission on Environment and Development conference in Rio de Janeiro,journals

(like International Journal of Sustainable Development, Sustainable Development and World

Ecology, Environmental Modeling and Assessment, Environment and Development Economics,

Ecological Economics and others),books(Clark and Munn, 1987; Costanza, 1991; Wacker-

nagel and Rees, 1995; Dodds, 2000; Starke, 2002),laws, as the European Directives 337/85

and 11/97 for the Environmental Impact Assessment or the 42/2001 for the Strategic Environ-

mental Assessment, andinternational agreements, as the still unattended Kyoto protocol (see

http://unfccc.int/cop3/ for details). The main result of this huge effort is that people

and governments are now much more sensitive than thirty years ago to the problem of long term

survival of the world. However, despite this success, the issue of sustainability is still missing

a simple and clear theoretical framework. This is very unfortunate, because in the absence of

unified theories and methods of analysis any issue, no matter how important it is, becomes vague

and anoising and, in the long run, discourages young scientists from investing their skillness.

Since sustainability refers to the possibility of keeping alive forever all meaningfull social and

natural compartments of an evolving system (from towns to continents) it is clear that anyformal

definition of sustainability must refer to the long term behavior of some appropriate dynamical

system. Thus, one shoulda priori expect that the analysis of sustainability with respect to the

parameters characterizing the system (e.g. latitude, resource availability, population, . . . ) or its
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government (e.g. standards on emissions, environmental taxation schemes, subsidies, . . . ) can

be performed through the study of the bifurcations of the attractors of a mathematical model

mimicking the evolution of the real system. This is, indeed, the thesis of this article, which has

the ambitious target of establishing a bridge between an important issue (sustainability) and a

basic chapter of modern mathematics (bifurcation analysis of dynamic systems).

The paper is organized as follows. In the next section two components of sustainability, called

profitability andcompatibility, are defined with reference to an abstract model of the system. The

first component takes into account only the social compartment of the system, while the second is

only concerned with the environmental aspects. From these definitions it follows that the study of

profitability and compatibility can be carried out through the bifurcation analysis of the attractors

of the model. However, not all the attractors of the system are involved, but only those which

are “positive” with respect to the social or to the environmental variables. Then, in the third

section, sustainability is defined by putting social and environmental aspects at the same level

of importance. This definition is in line with the theory of conflict resolution in multiobjective

analysis and it is not as partisan as others proposed by many economists and environmentalists.

Again, from our definition it follows that a bridge can be established between sustainability

and bifurcation theory. Finally, an entire section is devoted to highlight through an example the

meaning of the various definitions given in the paper and to show how the bridge established with

bifurcation theory can allow one to systematically and effectively discuss sustainability once a

model of the system is available.

2 Profitability and compatibility

We now assume that the time evolution of the variables involved in the problem under considera-

tion is described by a set of ordinary differential equations (ODE). We also assume that the state

vector can be partitioned in three subvectorsx, y andz of dimensionsnx, ny andnz, respec-
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tively, and that the variablesxi, i = 1, . . ., nx andyj, j = 1, . . ., ny are indicators of social and

environmental value. For example, the variablesxi could be measures of employment, welfare,

health or education in a given nation, while the variablesyj could be abundances of some plant

or animal species in a forest, air quality in various towns, water quality in some rivers and lakes

and so on.

All these variablesxi andyj are typically non-negative, because they represent, directly or

not, densities or biomasses. The equations describing the evolution ofxi andyj over time are

simply conservation equationsinvolving the balance between inputs and outputs. Moreover, the

input and output rates in the balance equations are, with almost no exception, expressed in terms

of net per capita rates. In other words, the rate of variation ofxi (dxi/dt = ẋi) is the product of

the abundancexi and the net growth rate per capitafi, which is a function of all variables. All

this brings to the conclusion that the model can be assumed to have the following general form

ẋi = xifi (x, y, z, p, q) i = 1, . . . , nx (1)

ẏj = yjgj (x, y, z, p, q) j = 1, . . . , ny (2)

żk = Hk (x, y, z, p, q) k = 1, . . . , nz (3)

wherefi andgj are net growth rates per capita,zk are variables of no direct social and envi-

ronmental interest, andp andq are constant parameters which identify the characteristics of the

system (altitude, structure of trasportation networks, fleet dimension, . . . ) and of its management

(emission standards, fishing quotas, subsidies for tourism development, . . . ).

The particular form of eqs. (1,2) (sometimes called Kolmogorov’s form) is such that the non-

negativity of the variablesxi andyj is preserved forever if it is guaranteed at the initial timet = 0,

i.e. the spacexi > 0, yj > 0 for all i, j is an invariant set. For physical reasons, in the following

we will always refer to this invariant set even if we do not say it explicitly. Given the pair(p, q),

i.e. given system (1-3), all its attractors in the above invariant set are uniquely identified (even if
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not always easily computable). These attractors can be many. Some of them can be not positive

– i.e. xi = 0 andyj = 0 for some(i, j) –, while others are positive with respect tox (i.e.

the attractor is characterized byxi > 0 ∀i) and/or with respect toy (i.e., yj > 0 ∀j). From

now on, an attractor which is positive with respect tox will be calledx-positive, and similarly

for y, while an attractor which is positive with respect tox andy will be called(x, y)-positive.

The existence of anx-positive attractor guarantees the possibility that all compartments of social

interest remain alive forever. From an economic viewpoint, this means that the system has the

possibility of producing profits forever. This justifies the following definition.

Definition 1 A pair (p, q) is profitable if system (1-3) has at least onex-positive attractor.

From this definition it follows that the points(p∗, q∗) of the boundary of the profitability

region in the space(p, q) are bifurcation points of system (1-3). In fact, given a boundary point

(p∗, q∗) there exist pairs(p, q) infinitely close to(p∗, q∗) for which system (1-3) has an attractor

characterized byxi > 0 ∀i. By varying the parametersp andq, the attractor must cease to

exist or to bex-positive at(p∗, q∗). In the first case the attractor has a catastrophic bifurcation

at (p∗, q∗); for example, if the attractor is an equilibrium it disappears through a saddle-node

bifurcation or through a subcritical Hopf bifurcation, if it is a limit cycle it disappears through a

tangent bifurcation of cycles or through a homoclinic bifurcation, and so on for more complex

attractors (i.e., tori and strange attractors). In contrast, if the attractor does not disappear at

(p∗, q∗) but loses its positivity with respect tox at that point, then system (1-3) has a transcritical

bifurcation at(p∗, q∗). This is a consequence of the Kolmogorov’s form of eq. (1) which has the

constant solutionxi = 0 for all values ofp andq Notice that transcritical bifurcations are generic

in Kolmogorov’s systems (Kuznetsov, 1995).

It is worth noticing that not all bifurcations of system (1-3) are involved in performing the

profitability analysis of a system. In fact, bifurcations of attractors which are not positive with

respect tox have nothing to do with profitability. The same is true forx-positive attractors which
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remain such while undergoing a non-catastrophic bifurcation (e.g. a supercritical Hopf bifur-

cation). Finally, if the system has multiplex-positive attractors, a catastrophic or transcritical

bifurcation of one of them does not imply the loss of profitability, which is guaranteed by the

remainingx-positive attractors.

It is important to notice that the persistence of all social characteristics is not always guar-

anteed in a profitable system. In fact, in such a system, besides anx-positive attractorA′(p, q),

there can also be another attractorA′′(p, q) which is not positive with respect tox, namely an

attractor characterized byxi = 0 for somei. In such a case, a sufficiently strong perturbation,

like a political scandal, an epidemics or a war, can move in a very short time the state of the

system from the attractorA′ into the basin of attraction of the alternative attractorA′′. Thus,

after the perturbation has ceased, the system will tend towardA′′ and lose some of its social

characteristics. It is therefore lecit to distinguish between safe and risky profitability as follows.

Definition 2 A profitable pair(p, q) is safe if all the attractors of system (1-3) arex-positive,

and risky otherwise.

Analogous considerations hold for the environmental characteristics of the system: when it

is possible to preserve them forever, we say that the system is compatible.

Definition 3 A pair (p, q) is compatible if system (1-3) has at least oney-positive attractor.

We can also distinguish between safe and risky compatibility as follows.

Definition 4 A compatible pair(p, q) is safe if all the attractors of system (1-3) arey-positive,

and risky otherwise.

Of course, the boundary of the compatibility region in the space(p, q) enjoyes the same

properties pointed out for the boundary of the profitability region. Thus, points(p∗, q∗) belonging

to that boundary are catastrophic or transcritical bifurcation points of system (1-3).

6



3 Sustainability

In order to give a definition of sustainability which is not as partisan as the two previous ones, we

pretend that both the socio-economic and the environmental compartments of the system persist

forever. In other words, our formal definition of sustainability is the following.

Definition 5 A pair (p, q) is sustainable if system (1-3) has at least one(x, y)-positive attractor.

Notice that a sustainable system is both profitable and compatible, while the converse is not

always true. In fact, a system could have many attractors, somex-positive and somey-positive,

without having one(x, y)-positive attractor.

As far as risk is concerned, in the case of sustainability one can distinguish between economic

and environmental risk as follows.

Definition 6 A sustainable pair(p, q) is safe if all attractors of system (1-3) are(x, y)-positive,

and risky otherwise. Moreover, a risky sustainable pair(p, q) is at economic [environmental]

risk if one of the attractors of system (1-3) hasxi = 0 for somei [yj = 0 for somej].

Of course, the boundary of the sustainability region in the space(p, q) can be determined

through bifurcation analysis by looking, in particular, at the catastrophic and transcritical bifur-

cations of the(x, y)-positive attractors. Moreover, also the boundaries separating safe and risky

systems are composed of bifurcation points.

4 An example

The example we present in this section concerns tourism sustainability. The model is an exten-

sion of a simpler model described in detail in Casagrandi and Rinaldi (2002). The problem is

rather abstract and refers to a hypothetical site characterized by four variables: number of tourists

(x), environmental quality(y), and capital, subdivided into two quotas (z1 andz2) measuring the
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value (amount) of structures producing touristic services of different nature (e.g., cultural and

recreational). The model has the following form

ẋ = x

[
µy

y

y + ϕy

+ µz
λz1 + (1− λ)z2

λz1 + (1− λ)z2 + ϕzx + ϕz

− αx− a

]
(4)

ẏ = y
[
r
(
1− y

K

)
− β1z1 − β2z2 − γx

]
(5)

ż1 = −δz1, +νεx (6)

ż2 = −δz2 + (1− ν) εx (7)

At the righ-hand-side of eq. (4), the first term is the flow of tourists attracted by the environ-

mental quality of the site, while the second is the flow of tourists attracted by services (withλ

and(1 − λ) representing the relative preferences for the two classes of services); the third term

is negative and specifies how quickly the tourists abandon the site when it is crowded, while the

last term is the basic rate at which tourists abandon the site. If the site is absolutely not attrac-

tive (y = z1 = z2 = 0) and there is no crowd, the tourists decay asexp(−at). Of course, the

ratea of this exponential decay is higher if there are many other interesting touristic sites. It is

therefore reasonable to assume, as done in the following, that the parametera is a measure of the

competition of the alternative touristic sites.

In eq. (5) the first term says that in the absence of touristic activities(x = z1 = z2 = 0) the

environmental quality recovers to a carrying capacityK in accordance with a logistic equation,

while the other terms represent the environmental impacts due to the supply of touristic services

and to the presence of tourists.

Equations (6) and (7), which are linear, say very simply that the structures needed for pro-

ducing services would become obsolete at an exponential rateδ if part of the profit (proportional

to the number of visiting tourists) would not be reinvested in the service sector.

Assume that we are interested in the sustainability of the tourism industry and we want to dis-
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cover the impact of the parametersε (reinvestment of the touristic agents, for simplicity called

investment) anda (competition of alternative touristic sites, calledcompetition). Moreover, sup-

pose that we also like to detect the effect on sustainability ofλ andν, which represent the pref-

erence of the tourists and of the agents for the first class of services. For this we must perform

a bifurcation analysis of model (4-7) with respect toε, a, λ, ν. The first step can be the study

of the caseλ = ν = 0.5, in which the two classes of services are not distinguishable. Figure 1

shows the bifurcation diagram in the space(ε, a) for the reference parameter values given in the

caption. The diagram has been obtained using specialized software for bifurcation analysis based

on continuation techniques (Khibnik et al., 1993; Doedel et al., 1997). The attractors are either

equilibria or limit cycles and there are only five types of bifurcations (Kuznetsov, 1995), that is

TCeq = transcritical bifurcation of equilibria;

SNeq = saddle-node bifurcation of equilibria;

PLASNeq = saddle-node bifurcation of equilibria in the planey =

0, z1 = z2;

HOPF = supercritical Hopf bifurcation;

HOM = homoclinic bifurcation.
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Figure 1 around here

Figure 1 shows that there are two codimension-2 bifurcation points: a Bogdanov-Takens

(see pointBT , where a saddle-node, a Hopf, and a homoclinic bifurcation curve merge) and a

degenerate saddle-node (see, pointTCSN , where a transcritical and a saddle-node bifurcation

curve merge). The space(ε, a) is partitioned into 10 regions, each one characterized by a specific

set of attractors. From Definition 1 it follows that the system is not profitable only in region 8,

i.e. the tourists can be permanently present on the site if the competition of the alternative sites

is not too high. Similarly, from Definition 3 it follows that the system is not compatible only in

region 10, i.e. the environment is necessarily jeopardized by tourism activities if agents reinvest
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a lot (ε high) and alternative sites are not very competitive (a low). Finally, from Definition 5

it follows that the system is not sustainable in regions 8, 9, and 10, i.e. not only where it is not

profitable (region 8) and where it is not compatible (region 10), but also in region 9 where the

system is both profitable and compatible.

Figure 1 explicitly shows that not all bifurcations are boundaries of the profitability, compat-

ibility, and sustainability regions. For example, the Hopf bifurcation curve is not a boundary of

these regions.

The same bifurcation curves can be used to further partition the profitability, compatibility,

and sustainability regions into safe and risky subregions. For example, Figure 2, which has been

extracted from Figure 1, shows the subregions in which sustainability is safe and those in which

it is at economic and/or environmental risk. From Figure 2 one can immediately conclude that

the system can be sustainable and safe only if the alternative sites are not too competitive and

the agents are not too aggressive in reinvesting their profits. An increase of competition first

gives rise to an economic risk and then to the collapse of the tourism activities. Viceversa, an

increase of the aggressivnessε of the agents first generates some environmental risk and finally

jeopardizes the environment.
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Figure 2 around here

Once the analysis for the symmetric caseλ = ν = 0.5 has been performed, the parameters

λ andν can be relaxed and the same software can be used to complete the analysis through

continuation, starting from Figs. 1 and 2. Two bifurcation diagrams produced in this way are

shown in Fig. 3. The first refers to the case in which tourists are more interested in the first kind

of services(λ = 0.8), while agents invest primarily in the second class of services(ν = 0.2).

The effect, with respect to the symmetric case, is an increase of the safe sustainability region

and of that at environmental risk. In the opposite case, i.e. when agents adapt to the preferences

of the tourists(λ = ν = 0.2), the above regions shrink and the system becomes more robust
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with respect to the competition of the alternative sites. All these properties, as well as others that

could be easily obtained through continuation, are extremely useful for deriving qualitative but

meaningful conclusions on tourism sustainability.
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Figure 3 around here

5 Conclusions

Defining sustainability is a very difficult task, since everyone has different perspectives on what

should be sustained. In this article we have tried to look at two of the most commonly visited

viewpoints. According to the majority of socio-economical scientists, humans well-being and

prosperity are issues of primary importance and should be saved with the highest priority. For

them, Nature is often the lower trophic level at the expenses of which we can happily survive

and grow. Other researchers, especially conservation biologists and philosophers, claim that we

are but a very marvellous species that must coexist with other natural beauties, like animals and

plants, clear lakes, pristine seas or green mountains with pure air. Many human activities often

sounds to them like disturbances that interfere with the organic life of the biosphere. Mediation

between these viewpoints is impossible. However, everyone of us has some economic interests

in her/his everyday lifeandhas the profound necessity of interacting with an alive environment,

not simply for exploiting it in the present or in the near future.

We decided to be extreme here. Compatible is every policy that does not completely destroy

the environment. Profitable is every policy that ensures some persistent income, no matter how

little it can be. Evidently no conservation biologist or economist would easily accept these crude

definitions, but surely they will agree that a non-compatible or non-profitable policy cannot be

realisticallysustained in the long run. If the policy is such that a situation which is simultaneously

compatible and profitable does exist, thus we can hope to sustain a community. Of course, the

income can be unaccettably too little or the environmental conditions can be too contaminated.
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This is matter of specific considerations or personal judgement and it is hard to see how a formal

method applicable in general to any dynamical model can solve the issue. The method we have

proposed, however, helps in selecting the set of sustainable policies in a rigourous way. Trashing

the unsustainable can be a good starting point, indeed, in extremely complex situations.
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Figure legends

Figure 1 Bifurcation diagram of model (4-7) in the parameter space (ε, a) for the caseλ =

ν = 0.5. The attractors in each region of the parameter space are sketched in the three

dimensional space (x, y, z = z1 + z2). Other parameter values are as follows:r = K =

α = γ = ϕz = 1, µy = µz = 10, ϕy = β = 0.5, δ = 0.1.

Figure 2 Sustainability diagram of model (4-7) with respect to investment and competition.

Parameter values as in Figure 1.

Figure 3 Sustainability diagram of model (4-7) with respect to investment and competition in

the asymetric cases whereλ = 0.8 andν = 0.2 (left panel) orλ = ν = 0.2 (right panel).

Other parameter values as in Figure 1.
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