Catastrophic bifurcations in a second-order
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In this paper we present a second-order nonlinear dynamical system modelling the interactions of
trees and damaging insects in a forest. With this model we discuss the influence of acidic deposition,
an increase of which can cause sudden insect infestations and the collapse of the forest ecosystem.
The analysis is carried out by finding the bifurcations of the system and by proving that under suitable
conditions, such bifurcations can be catastrophic. The conditions for bifurcation can be explicitly
given, and this facilitates the biological interpretation of the results.
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Introduction

The increase in acidic deposition during the last decades
has caused great damage in many forest ecosystems,
in particular in the northern countries. Statistical evi-
dence in the field data, laboratory experiments, and
principles of biochemistry have allowed scientists to
identify or, better, conjecture potential mechanisms
through which an increase in acidic deposition might
affect a forest ecosystem (see, for instance, Refs. 1
and 2 for comprehensive reviews). In general, these
conjectures are not formally stated and make reference
only to simple diagrams obtained through linear regres-
sion. It is therefore impossible, or at least very risky,
to make any sort of quantitative forecast of the behav-
ior of a given forest. Even predicting the kind of im-
pact one should expect—namely, a smooth decline or
a collapse of the forest—is a very difficult task. In other
words, generic statements such as “‘in the next few
years, damage to the leaf cuticle will become more and
more frequent, and forest biomass will smoothly de-
crease’’ or ‘‘in the near future we will experience an
unexpected and dramatic collapse of the forest” can
hardly be supported scientifically.

We should first cast what we know of forest bio-
chemistry into a mathematical model describing the
dynamics of the ecosystem and then analyze such a
model, in particular with regard to bifurcations.? Only
in this way can one really determine whether a series
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of conjectured mechanisms can allow the prediction,
or at least the explanation, of a forest collapse, which
is nothing but the transition from an equilibrium (the
healthy forest) that has become unstable to a new sta-
ble mode of behavior (the damaged forest).

The preceding arguments suggest that it is worth the
effort to transform the most credited hypotheses about
the potential mechanisms of impact of acid deposition
on forests into mathematical models. The analysis of
these models, which are in general deterministic dy-
namical systems, and in particular the nature of the
bifurcations involving the parameters related to acidic
deposition will give rise to a very interesting classifi-
cation of many, if not all, impact mechanisms. To a
first class (noncatastrophic bifurcations) belong those
mechanisms that can cause only the smooth decline of
a forest. Of course, in practice the decline can be quite
consistent if acidic deposition increases at a high rate,
but what is important in this context is that the forest
will change its state gradually, say at the same speed
as acidic deposition. Another class (catastrophic bi-
furcations) comprises the most dangerous mechanisms
of impact, namely, those that can generate a discon-
tinuity in the state of the forest. Of course, for technical
reasons the analysis of the bifurcations is possible only
if the models are fairly simple. This is why the first
steps along this line,*> as well as the analysis presented
in this paper, make use of low (second or third) order
models. This method implies that only the main char-
acteristics present in the ecosystem (such as trees,
parasites, predators, toxic substances in the soil, and
exploiters) are taken into account in modelling the for-
est and that ‘‘details’’ such as soil heterogeneity, spe-
cies diversity, age structure of the trees, and variability
of the climate are simply neglected. Such a procedure,
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which makes no sense when building a simulation model,
is actually mandatory® if one is trying to derive general
principles and classify phenomena.

In this paper we propose a second-order nonlinear
model that describes the interaction between trees and
forest insects. As a matter of fact, the alterations to
this interaction have been argued to be among the main
causes of forest decline (see, for example, Chapter 14
of Ref. 1 and Chapter 4 of Ref. 2). Then we analyze
the stability properties of such a model for all values
of its parameters, assuming that the searching time of
the damaging insect is the only biological parameter
affected by acidic deposition. This might not be true
in reality because acidic deposition also influences other
parameters, but this is the only way to investigate
whether such an elementary mechanism can by itself
be responsible for the collapse of a forest. The analysis
shows that, depending on the value of the other pa-
rameters, namely, depending on the kind of trees and
insects, all cases are possible. In other words, forests
of a certain type may be expected to decline with acidic
deposition, while for other forests we should expect a
collapse. .

From a technical point of view the results are ob-
tained by analyzing the qualitative behavior of a sec-
ond-order nonlinear dynamical system. As far as we
know, this system has never been studied, although it
is a simple extension of two classes of systems recently
considered by the authors.”® The system turns out to
have multiple equilibria, the local stability of which
can be easily discussed through the relevant Jacobian
matrix. In some cases these equilibria are globally sta-
ble, while in other cases they are only locally stable
or unstable (this happens, in particular, when there is
a limit cycle that can be proved to exist for suitable
values of the parameters). Moreover, analysis of the
bifurcations shows that catastrophic bifurcations may
occur and that the corresponding transitions in the state
space can involve either two equilibria or one equilib-
rium and one cycle. The conditions for bifurcation can
be explicitly given, and this facilitates the biological
interpretation of the results.

The model

We now describe a forest model that accounts for the
relationships between trees (x) and insects (y) in the
presence of predators (e.g., birds) (z) feeding on the
insects. In its essence this is a three-level food chain,
x — y — z. For the reasons pointed out above, we
assume that the territory under study is homogeneous,
that age structure and species diversity do not influ-
ence the rate of growth of total tree biomass, and that
climate and other environmental conditions are sta-
tionary. Moreover, we suppose that the predators can
be approximated by a constant parameter (z). This is
the case, for example, when predators are animals ar-
tificially controlled by humans or feeding also on re-
sources other than y. Under these assumptions the
dynamics of trees and insects is described by the fol-
lowing differential equations with constant parameters:

X= rx(l - %) — yp(x) ¢))

y =ylep(x) —d — ey] — zq(y) 2

where x(7), y(), and z are suitable measures of density
or biomass for trees, insects, and predators, respec-
tively. In the absence of insects the rate of growth of
trees per unit of biomass, namely, r(1 — x/K), de-
creases with x. This is the standard assumption of lo-
gistic growth® of resources, which, in the present case,
accounts for competition of crowns for light and roots
for nutrients. The intrinsic growth rate r describes the
exponential growth x(¢) = x(0) exp (r?) of the resource
at low densities, while the carrying capacity K is the
tree biomass at equilibrium in the absence of damaging
insects (realistic values of r and K for various kinds of
trees and soil at different latitudes can be found in
specialized handbooks). The term p(x) in (1) is the
functional response!® of insects, namely, the tree bio-
mass destroyed by each insect in one unit of time, and
the parameter ¢ in (2) is a simple conversion factor
that specifies the birth rate of insects. The negative
terms in (2) correspond to three different components
of the mortality rate of insects: d is the baseline death
rate per capita, namely, the death rate at low density
and in the absence of predators; ey is the surplus of
death rate due to intraspecific competition within in-
sects; and zq(y) is the mortality rate caused by pred-
ators.

To completely define our forest model, we must
specify the functional responses p(x) and g(y). We do
this by using the model proposed by Holling,!® which
is by far the most commonly used in this type of study.
Let us assume that the average distance between points
at which the resource can be successfully attacked by
insects (for example, erosion of leaf cuticles near tri-
chomes and vascular tissues, lesions on lateral edges
of leaves, and hypertrophy of mesophyll cells) is in-
versely proportional to tree biomass. Thus the
‘“‘searching time,”’ namely, the time the insect needs
to find a unit of exploitable resource, is s/x, where s
is a constant parameter. If the time /& needed by each
insect to handle one unit of resource is constant and
all other activities of the insect occupy a fraction u of
its time, we can write

“p0o) + hp(o) = 1~
from which it follows that

poy =25 3)

Thus b/c is the maximum ingestion rate of each insect,
and a is the half saturation constant, namely, the bio-
mass of trees at which the ingestion rate of the insect
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is half the maximum. In a similar way, one can derive
the functional response g(y) of predators, which can
be written as

Yy
f+y
by selecting suitable units for z.

In conclusion, by taking equations (1)—(4) into ac-
count, the model can be written as

. _x\ by
x—x[r(l K) Ca+x] s)

q(y) = “4)

X z
=l b g
y y[ P d—ey f+y] (6)
where the eight parameters r, K, a, b, ..., f are
positive and
b>d+2 )
f

because the maximum birth rate 4 of insects must be
greater than their mortality rate at low density (y =
0) in order to have a meaningful system. Model (5)—(6)
is of the form

X = xg(x,y) ®
¥y = yh(x,y) )]

with g(0,y) and A(x, 0) bounded for x = 0 and y = 0.
It is therefore a positive dynamical system, since x(0),
¥(0) = 0 implies that x(¢), y(#) = 0 for all t > 0. Systems
of this kind have been studied by Kolmogorov in a
celebrated paper!! and by many other authors. Under
suitable conditions, system (8)—(9) can have only two
modes of behavior, called Kolmogorov’s modes: a
globally stable equilibrium or a globally stable limit
cycle. This property, which is sometimes taken as a
dogma, is actually not satisfied by system (5)—(6), as
we will see in detail in the next section. (This fact has
already been proved’ for the special case ¢ = 0.) Thus
our model is much more complex than the standard
prey-predator model (e = z = 0 in (5)-(6)), which has
been extensively studied!?~!5 and has indeed only the
two Kolmogorov’s modes of behavior.

As a last point, we now specify how acidic depo-
sition influences model (5)—(6). Since we want to study
the impact that acid deposition has on tree biomass
indirectly, through perturbations of the host-insect in-
teractions, we assume that all the parameters char-
acterizing the natural growth of trees and the behavior
of insects and predators are constant. On the other
hand, we assume that the density of points at which
the resource can be successfully attacked by the in-
sects is strictly increasing with acidic deposition. Evi-
dence for this assumption can be found in the literature?
and is due to the fact that alteration of tree morphology,
physiology, metabolism, or chemistry by acidic dep-
osition may predispose forest trees to enhanced patho-
gen or insect activity. In particular, such a predispo-
sition may be caused by erosion of the cuticle, since
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integrity of epidermal cells is critically important as a
resistance mechanism against a variety of insects. Al-
teration of foliar volatile release as well as changes in
leaf chemistry, especially those involving ethylene, may
also have important implications for insects in finding
hosts. Thus from the preceding discussion it follows
that the searching time of the insect is the only factor
affected by acidic deposition. In conclusion, only one
parameter, a, varies with acidic deposition in model
(5)—(6). Consistently, in the following, such a param-
eter will be assumed to be a strictly decreasing function
of acidic deposition.

Modes of behavior

In this section we analyze and classify all modes of
behavior of system (5)—(6). To do this, we exploit sim-
ple geometric properties of the isoclines x = 0 and

y=20
Isoclines x = 0
Imposing x = 0 in (5), we obtain a trivial isocline,

namely, x = 0, and a nontrivial isocline (g(x,y) = 0)
that has the form

y=qo(x)=g-r<1 —%)(a+x) (10)

and is therefore a parabola passing through point (K, 0).

Isoclines y = 0

Imposing y = 0 in (6), we obtain a trivial isocline,
y = 0, and a nontrivial isocline (4(x,y) = 0) that has
the form

X =90 =a (f+y)d+ey)+z
F+yb—d—ey) -z
Its intersection with the x-axis
d+z/lf
b—d-zlf
is positive (see inequality (7)), while the derivative at
that point

11

%(0) = a (12)

o Zf*—e
¥'(0) = abb—d—z/f (13)
is negative if and only if (recall that (7) holds)
?ZE >e (14)
Moreover, §(y) is convex because " > 0. In fact,
" h h
but 4,, = 0, so
[ _@
h

and A, > 0, while A,, < 0. Finally, it is trivial to check
that the isocline x = (y) goes to infinity when y tends
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to the unique positive root Y (see (7)) of the second-
order polynomial
d-— 5) =0 (15

ey2+(ef—b+d)y—f<b— 7

Because of their convexity the two nontrivial iso-
clines y = ¢(x) and x = (y) can have no, one, or two
intersections in the positive quadrant, as shown in Fig-
ure 1(i), Figures 1(ii) and 1(iii), and Figures 1(iv) and
1(v), respectively. (We do not detail the relationships
among the parameters that correspond to each of these
cases because they are of no interest in the following
discussion.) In all five cases there are two trivial equi-
libria: the origin, which is always a saddle, and point
(K, 0) (trees at their carrying capacity and absence of
insects), which can be either a stable node or a saddle.
We now analyze cases (i)—(v), and we show that only
the first three cases have global attractors.

Case (i)

In this case there are no positive equilibria, so the
Poincaré theorem on the index of closed orbits? allows
the conclusion that limit cycles do not exist in the
positive quadrant. But one can actually prove that point
(K, 0) is a global attractor in the first quadrant. In fact,
trajectories starting from the right side of the isocline
x = (y) cross that isocline in finite time (x < —a <
0 in that region) and never come back to it because
X < 0 in the neighborhood of x = ¢(y). On the other
hand, all other trajectories starting from strictly posi-
tive initial conditions are characterized by y < 0 and
must therefore tend to (K, 0).

Cases (ii) and (iii)

In these cases the trivial equilibrium (X, 0) is a sad-
dle (easy to check), while numerical trials show that
the positive equilibrium can be either stable (actually
globally stable) (Figure 1(ii)) or unstable (Figure 1(iii)).
Nevertheless, when the positive equilibrium is unsta-
ble (case (iii)), there is a limit cycle around it. The
proof (a direct consequence of the well-known Ben-
dixon-Poincaré argument) is as follows. Consider the
closed line OKPQ (see Figure 2) comprised of the hor-
izontal straight line PQ and the segments of trajectories
Q0, OK, and KP, the last one being the separatrix
associated with the positive eigenvalue of the saddle
point (K, 0). Trajectories starting inside the region can-
not cross or tend toward its boundary (notice that y <
0 on segment PQ) and cannot tend to the positive equi-
librium because such an equilibrium is unstable. There-
fore trajectories tend toward a limit cycle surrounding
the equilibrium. Moreover, with the same argument
used in case (i), one can prove that trajectories starting
outside region OKPQ enter through segment PQ in
finite time, so the limit cycle is globally stable provided
that it is unique. The formal proof of this last fact,
based on the analysis of the geometric properties of a
Lyapunov function, is quite complex and will be pre-
sented elsewhere. (The study of the much simpler case
in which two parameters, namely, e and z, vanish has
required an entire paper.'5)
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Figure 1. The nontrivial isoclines y = ¢(x), (x = 0), and x =
Yly) (y = 0) of system (5)—-(6) in the five cases of interest. Open
squares are unstable points, while solid circles are stable points.
The graphs correspond to the following numerical values of the
parameters: r = 2, f =1, K =10,a = 2, e = 0.05, b/lc = 2/3,
andb =5.1,d=4,z=05(casei); b = 6,d = 3.5,z = 1 (case
(ii)); b =6,d = 2.2,z= 18 (case (iii)); b =51,d = 3,z =2
(case (iv)); b = 5.1, d = 2,z = 3 (case (v)).
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separatrix of
the saddle point
(k,0)

0 o) K X

Figure 2. The nontrivial isoclines in case (iii) of Figure 7 and
the Poincaré region OKPQ.

Cases (iv) and (v)

In these cases the trivial equilibrium (K, 0) is a stable
node, and one of the two positive equilibria (point A
in Figures 1(iv) and 1(v)) is a saddle. In fact the Ja-
cobian matrix at that point is given by

Xgx Xg —-x@'g,  xg
J= = ’ (16
yh. yh, yhy —yy'h, )
and its determinant
det J = xyg,h.(¢'dy' — 1) (17)

is negative, since g, <0, &, > 0, and ¢'¢' > 1. On the
contrary, the second positive equilibrium can be either
stable (point B in Figure 1(iv)) or unstable (point B in
Figure 1(v)). Therefore in case (iv) we cannot have a
global attractor because there are two stable equilibria.
The same is true in case (v), in which there is a stable
equilibrium and a stable cycle surrounding point B.
The above analysis shows that model (5)-(6) can
actually fit the behavior of different types of forest.
Case (i) is the most typical one: At equilibrium the
trees are at their carrying capacity, and the damaging
insects are absent (in practice they will be present at
an endemic level). Any casual invasion of insects is
absorbed, of course, with a more or less detectable but
temporary decline of tree biomass (see Figure 3(i)). In
case (ii), insects and trees coexist at an equilibrium
that is still globally stable (Figure 3(ii)), while in case
(iii) the forest undergoes periodic oscillations (Figure
3(iii)): A long period of tree growth is followed, all of
a sudden, by an outbreak of insects and by the death
of trees, after which the insects almost disappear and
regeneration starts. This is what happens, for example,
in the North American forests,!® where the principal
tree species are birch, spruce, and balsam fir (in Ref.
16 a higher-order model is used that involves, never-
theless, a three-stage food chain (tree — budworm —
birds)). Finally, cases (iv) and (v) correspond to forests
with two locally stable modes of behavior (Figures 3(iv)
and 3(v)). Indeed, the trees are at their carrying ca-
pacity if the insects are absent, but this equilibrium is
only locally stable. After a small invasion of insects
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Figure 3. The trajectories of system (5)-(6) in the five cases
considered in Figure 1.

the trees first decline and then recover to their carrying
capacity. The same thing happens, but with a much
longer and dramatic decline of the trees, if the invasion
of insects is relevant. On the contrary, for intermediate
initial values of y, the forest tends toward an equilib-
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rium (Figure 3(iv)) or a cycle (Figure 3(v)) in which
trees and insects find their way to coexistence. This
kind of phenomenon is a typical feature of three-stage
food chains” and cannot be explained by simpler models.3

Catastrophic and noncatastrophic bifurcations

In this section we analyze the bifurcations involving
the parameter a, which is the only one to be influenced
by acidic deposition. Moreover, we concentrate our
attention on the forests of the first type (case (i) in our
preceding discussion). In other words, we assume that
in normal conditions (a = a) the forest has a globally
stable equilibrium characterized by trees at their car-
rying capacity and absence of damaging insects (see
Figure 3(i)). This choice is quite justified both biolog-
ically and mathematically.

When acidic deposition increases, the parameter a
(initially equal to @) decreases, and the two nontrivial
isoclines y = ¢(x) and x = ¢(y) are smoothly de-
formed. The parabolay = ¢(x) (see equation (10)) shrinks
down as shown in Figure 4(a) (its derivative at point
(K,0) is given by ¢'(K) = —cr(a + K)/bK, and its
second intersection with the x-axis is at point (—a, 0)).
On the contrary the isocline x = (y) moves toward
the left as indicated in Figure 4(b) (its intersection (0)
with the x-axis (see (12)) as well as its derivative at
that point (see (13)) are proportional to a, while its
horizontal asymptote Yis not influenced by a (see (15)).

From the graphs of Figure 4 it is therefore clear that
a bifurcation occurs when a equals that particular value,
say a*, for which the two corresponding isoclines in-
tersect at point (K, 0), that is, when K = (0). Thus
from (12) it follows that

b—d-—z/f
d+ z/f

and obviously @ > a* because we have assumed that
in normal conditions (a = a) the forest behaves as in
Figure 3(i) (y(0) > K).

We can now study the nature of this bifurcation and
find out when it is catastrophic and when it is not. We
recall that a bifurcation is catastrophic when the stable
equilibrium becomes unstable and no other stable equi-
libria or stable limit cycles can be found in its neigh-
borhood. Thus a noncatastrophic bifurcation implies a
continuous variation of the stable equilibrium (starting

a* =K (18)

y y
y=9(x) x=(y)
(72 S -
aé\é\coé\{‘o(\ -
e depcf;‘j;'ico
a=0 a=a a=0 a=3
0 k X 0] X
(a) (b)

Figure 4. The influence of acidic deposition (parameter a) on
the nontrivial isoclines y = ¢(x) (case a) and x = (y) (case b).

from point (K, 0)) after the acidic deposition has reached
the critical value corresponding to a = a*. On the
contrary, if the bifurcation is catastrophic, when point
(K,0) becomes unstable, the system will switch to a
completely different mode of behavior. Therefore in
the case of a noncatastrophic bifurcation the forest will
simply decline, while in the opposite case it will col-
lapse suddenly.

Noncatastrophic bifurcations

The condition for a noncatastrophic bifurcation at
point (K, 0) is

bK/( z

2L <1 19

rc (f 2 e) (19)
In fact if (19) holds, we have (long but easy to check)

o (K)Y'(0) <1 for a=a* (20)

Thus in the neighborhood of point (K, 0) the isoclines
y = @(x) and x = Y(y) fora = a* + €, a = a*, and
a = a* — € (e small and positive) are shaped as in
Figure 5: for a = a* the equilibrium (K, 0) bifurcates
into two equilibria, namely, (K, 0) and (¥, ). The equi-
librium (%, y), which exists only for Q = Q* — ¢, is
always stable, since at that point the Jacobian matrix
(16) has a negative trace (¢’ <0, g, <0, and y of the
order of €) and a positive determinant (17) (g, < 0,
h, > 0, and @'y < 1 by continuity from (20)). On
the contrary, the equilibrium (K, 0) is stable for Q =
O* — e, so the bifurcation is indeed noncatastrophic.

Catastrophic bifurcations

The condition for a catastrophic bifurcation at a =
a* is just the reverse of (19), namely,

bK<i - e> >1 Q1)

rc \ f?

In such conditions, ¢'(K)y'(0) > 1 for a = a*, and the
two isoclines are shaped as indicated in Figure 6. Thus
there are two equilibria (one of which is stable) for
a = a* + eand one for a = a* — ¢, so the bifurcation
is catastrophic. In this case, when acidic deposition
increases so much that a becomes smaller than a*, the
system will leave the equilibrium (X, 0) and tend to-
ward a positive equilibrium (in the case of Figures 1(ii)
and 3(ii)) or toward a limit cycle (in the case of Figures

a=a*+e aza* aza%*-¢
_ x=9(y) _ _
y=@(x) Y600 x=P(y) y=9(x) x=$(y)
K $O) x k x q;(O‘)"; X
(a) (b) (c)

Figure 5. The nontrivial isoclines and the equilibria of system
(5)—(6) in the case of a noncatastrophic bifurcation. (Open squares
are unstable points, solid circles are stable points, and X’s are
critically stable points.)
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aza*+e a=a* a=a*-g
x=g(y)
x=P(y) y=9(x) x=(y) y=9(x) y=9(x)
K90 x =ho)  x b(0) K x

Figure 6. The nontrivial isoclines and the equilibria of system
(5)-(6) in the case of a catastrophic bifurcation. (Open squares
are unstable points, solid circles are stable points, and X's are
critically stable points.)

1(iii) and 3(iii)). In any case, in a very short time the
forest will be infested by insects, and tree biomass will
be substantially reduced.

Discussion

The above analysis has shown that the simple forest
model we have proposed can account for different kinds
of behavior of forest ecosystems. In particular, the
model explains the case in which damaging insects are
present only at an endemic level as well as the case in
which the forest is periodically infested by insects. But
the most important result of the analysis is that our
model can be used to discuss the influence of acidic
deposition. In fact, in the case in which predisposition
of forest trees to insect infestation is enhanced by acidic
deposition, we have proved that the point at which the
first impacts on tree biomass are detectable can be
easily quantified by a simple formula (equation (18)).
In particular, this formula says that the forests that
should be affected first are those that have a large
carrying capacity of the trees (K), a large maximum
birth rate (b) and a low death rate (d) of the insects,
and a low pressure of the predators on the insects (z
small and f large). But the analysis can also distinguish
between smooth impacts (decline of tree biomass) and
dramatic impacts (collapse of the forest), again through
a very simple formula (equation (19) or (21)) that qual-
ifies the nature of the bifurcation. Such formulas, for
example, state that a collapse is more likely in forests
with low growth rate of the trees (r), high number of
predators (z), and weak intraspecific competition within
insects (e). Moreover, the comparison of equation (18)
with equations (19) or (21) points out some very in-
teresting facts, which could hardly be proved without
the analysis of the bifurcations. For example, equation
(18) shows that a possible way to temporarily avoid
damages in a forest subject to increasing acidic dep-
osition and potential pest infestation is to increase the
number of predators (z) feeding on the insects (a* de-
creases with z in (18)). But equation (21) shows that if
z is increased, there are higher chances that the forest
will collapse when it is finally affected. In other words,
with this type of countermeasure (stocking the forest
with predators) we can postpone the time of the impact
but at the risk of transforming it in a real disaster.
Similar phenomena have already been pointed out in
forest management (for example, a number of artificial
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countermeasures give rise to less frequent but more
severe forest fires) and seem to be a typical product
of the possibility of accumulating stress in a dynamical
system, which is, after all, nothing but an interpretation
of catastrophic bifurcations.

Concluding remarks

We have shown in this paper how one of the many
conjectured indirect mechanisms of impact of acidic
deposition on forests can be transformed into a math-
ematical model and how the analysis of the bifurcations
of that model can allow the classification of the nature
of the expected impact (a simple decline or a sudden
collapse of the forest). The conditions for catastrophic
bifurcations have been found explicitly so that inter-
esting biological conclusions pointing out the role of
different parameters (such as tree carrying capacity,
number of predators, degree of intraspecific compe-
tition, and birth and death rate of the damaging insects)
have been found. The analysis is only qualitative, since
the model is oversimplified and the numerical values
of the parameters are only roughly known. This situ-
ation calls for the refinement of the present model (for
example, substitution of foliage, branches, and trunk
biomass for tree biomass) and for a better knowledge
(based on statistical analysis of available field data) of
the numerical values of the parameters. Only when
these conditions are satisfied can a qualitative theory
like the one we have presented in this paper become
quantitative and allow the prediction of time and type
of impact on a forest ecosystem. But before going into
more details in a single case, we believe it would be
worth analyzing other major mechanisms of impact,
with the same aim and style that we have used in this
paper, in order to construct a simple but sound and
complete theory for the impact of acidic deposition on
forest dynamics.
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